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ROBUST TESTS OF MEAN VECTOR IN SYMMETRICAL MULTIVARIATE DISTRIBUTIONS

N. Giri and B. K. Sinha

ABSTRACT

Let X (Xi.) = (X{ ... ,X')'" X = (Xil.,...,X.) be a nx p random~j n ' i ip

matrix with probability density function

fx) = j-n/2 q(tr Z-l(x-e ')'(x-ev'))
X

where x E x = {x: nx p matrix I rank of n = p}, u = (cI, )' R I

e = (l,...,l)' n-vector and Z > 0 (positive definite). Assume that

q e Q - {q: [0,") [ [0,-), convexl and n > p so that X'X > 0 with

probability one. It is proved that for testing H 0 : H 0 versus

2
the alternative HI: a # 0, the Hotelling's T -test is locally minimax,

and for testing H0 : J(i) = 0 versus the alternative H1 : 11(I) # 0, the

appropriate Hotelling's T -test is both UMPI and locally minimax. In

the second case 2(1) = ( .l'''IIpI)'' P1 < p. and (uPl+l,...,1p), Z are

unknown. The above results generalize those of Gir and Kiefer (Ann.

Math. Statist., 1964) under the assumption q ' normal. As a technical

tool, Wijsman's representation theorem is used.

Keywords and Phrases: Elliptically symmetric distributions, Hotelling's

2
T -test, Hunt-Stein theorem, locally minimax tests, maximal invariant,

Wijsman's representation theorem. 13
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ROBUST TESTS OF MEAN VECTOR IN

SYMMERICAL MULTIVARIATE DISTRIBUTIONS

by

S. N. Girl
Universite de Montreal

and

B.K. Sinha

*University of Pittsburgh

- 0. introduction and Summary

Liet X =(X. ( .... X,(ii..I be a nxp random matrix

with probability density function

-n/2 - 1
f (X) E1 q(tr Z (x -e1') (x- elj'))

where XEX={x: n xp matrix jrank of x pl, v'G 1 ,. ,i )' $1

E e(,.,) n-vector and E >0 (positive definite pxp). We shall assume that

*q qQ ={q: [0,co) -~[0,-),convex}. This is a subclass of probability density

functions which are left 0(n) (nx n orthogonal matrices) orthogonally invariant

*distributions about ejji and is also a subclass of elliptically symmetric

- distributions about ejp' with scale matrix E. We shall assume throughout that

n >p so that X'X >0 with probability one (see Girl (1977)).

0t We shall write for any p-vector b = (b1,... ,b )'=((),2 ) with

=() (bl,... ,b ),b(2  (b 1 9....,b) and =(bi,... b.) and for any
P1 2 PJ
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px p matrix A=(a. j fA(11) A ( 1 2) with A 11,A (2)'p P1 and p 2 Xp 2 sub-
A (21) A(22)

matrices respectively, satisfying p1+p 2 p. Also we shall write

[i] ='a I the ixi left-hand corner submatrix of A. Denote by

A ill*,'a ii)

-1 n n
- , S =
n 1- 1 '- i

The assumption of multivariate normality i.e. when

q(tr -(x- e ')'(x- e '))

-np 
-

= (211) 2 exp{- -tr (x-e I')'(x-e I')} (2)22

leads us to derive optimum test procedures for testing problems concerning

w and Z. However it has been established that (see for example Kariya and

Sinha (1984) and the references contained therein) optimum procedures can

also be derived by replacing the multinormality assumption by one closely re-

lated to it, namely, the class of spherically symmetric distributions in the

case of a random vector X (pxl) and the class of elliptically symmetric dis-

tributions in the case of an nxp random matrix X. These optimum procedures in

turn involve the robustness of the distribution of the test statistic under

the null hypothesis (null robustness), the robustness of the distribution of

the test statistic under the alternatives (non-null robustness) and the ro-

bustness of the optimum properties of the test procedures (optimality robust-

ness). We shall call a test robust in any one sense if an optimality property

which the test enjoys can be extended to a class of distributions including

the distribution under which the optimality holds.
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We will consider here the following two testing problems about u for the

family of distributions given in (1).

(1) To test H10: u =0 against the alternatives Hl1: ~~ when _7 is

unknown.

(2) To test H: ) =2 against the alternatives H2 #0 when

(2) To tetH21: (1)

both ;(2) and ' are unknown.

Let G,(p) be the multiplicative group of pxp nonsingular matrices g. The

first problem remains invariant under Gz(p) with the action

(X,S;( (gX, gSg'; gn gg'), g E G (p) -

A maximal invariant in the space (R,S) under G,(p) is T2 =nX'S- ~ or equivalently

-- 2 2
R nX'(S +nXX')x =T /(l+T ). A corresponding maximal invariant in the

2 = Ilparametric space of (',) is 6 =n ' i. Kariya (1981) has proved that the Hotelling's

T2 test which rejects HI0 whenever T2 >C or equivalently R2 >C, where C is a

constant depending on the level a of the test, is uniformly most powerful in-

variant (UMPI), whatever q EQ. The distribution of T2 under H is the same

as that of T2 under the multivariate normal set-up (Kariya, 1982). Needless

to mention that the multivariate normal istribution belongs to the family

given in (1). We shall show in section 1 that the Hotelling's T2 test is lo-

callv minimax in the sense of Giri and Kiefer (1964) for testing H10 against

HI1 in (1) as -0. In the multivariate normal setup, this result is proved

:n Giri and Kiefer (1984).

Let T1 be the group of translations such that t 1 T translates the last

p, components of each X. i =l,...,n and let G be the multiplicative group of

p'p nonsingular matrices of the form

... . . . -... . . ...... .
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(g(ll) 0 ]

g g(21) g(2 2 ) 
(3)

where g(1 1 ) is the upper left hand corner p1 XP 1 submatrix of g. The second

problem remains invariant under the affine group (G,T1 ) such that for g G,

t ~T1

(g,tl)Xi  gXi +t, i =l,...,n.

A maximal invariant under (G,Tl) is given by (see Giri (1977))

2= nXl ) ( S ( ) +rX()l)- 1

- 1 - -

= nx'l s (1 )x 11 (1 + sR 1 l () ) (5)

A corresponding maximal invariant in the parametric space, under the induced

group of transformations, is

n1) (6)

For any invariant test under (G,TI), the second problem reduces to testing

- -
H 5 =0 against the alternatives H 2 > 0. We shall show in section
20 1 21 1

-2
2 that the test which rejects H20 whenever R 12>C is UMPI and locally minimax

as -2 _0 for (1). In the multivariate normal setup this test has been proved

-2
to be UMPI and locally minimax as 61 -0 (Gin and Kiefer (1964)).

1. Locally minimax test for problem I

The theory of locally minimax tests has been developed in Giri and Kiefer

2
(1964). We refer to this paper for details. For each (6 ,n) in the parametric

2
space 2, where , >0 and n is of arbitrary dimension and its range may depend

2 2
on S let p(x; ,n) be a probability density function on (X,A) with respect
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to some a-finite measure. Suppose that we are interested in testing at level

(0< c.<1 h yohssHs 2=0 against the alternatives HII:52

where A is a positive constant. For fixed a, consider the critical region of

the form

={x: U(x)>C } (7)

where U is bounded and positive and has a continuous distribution function

2 2 2 <2for each (S ,n), equicontinuous in 15 ,n) for some < and that

Po,()= a (8)

P ,() = +h(X) + g(Xq) (9)

where g(\,N) = o(h()) uniformly in n with h(A) >0 for N >0 and h() = 0(1).

Let 0 , A denote the a priori probability density function on the sets

{ .2 =0, {2 = } respectively such that

I P (x : "),, ) 1 (dn)

__= l+h(X)[g(X) +r(\)U(x)] + B(x,N) (10)

010
0Pfl) 0'ndn)

where 0 -c1, < r(7) <c 2 <- for A sufficiently small and g(A) o(l) and B(x,',)=

(h(,)) uniformly in x. If U satisfies (8) and (9) and if for sufficiently

small ", there exist -0 and satisfying (10) then 1 is locally minimax for
2 = 2 = - 0

testing HI0: 2=0 against the alternatives H' (specified) as .-
10 11

It is wellknown that (see fur example Giri, Kiefer and Stein (1963),

Girl, Kiefer (1964)) the Hunt-Stein Theorem cannot be applied for the group

G (p) with p 2. However this theorem does apply for the smaller group

. . . ,_- ~~ ~~~. . . . -. . . ., _ •- - . .. . . ." - . . _ / . -: _- : . •
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GT  {pxp nonsingular lower triangular matrices!

2with p > 2. Thus for each 5 , there is a level a test which is invariant under

GT (see Lehmann (1959), p. 225) and which minimizes among all level ,tests,

2the minimum power under H' . In the place of R under G(p), we obtain a

2
p-dimensional vector R= (R1,...,R2)' as a maximal invariant under GT and1- pT

R is defined by

2
R =n X (S +n X' )

ij,. .,

ih2 2= R2
with R. >0 and R . A corresponding maximal invariant in the parametric1- i

space under the induced group is 2 = ( .,5)' an 2..

19 l' d 1 D are given by

i

Y =nu -rl (12)

with 2 > 0, Z2 2

i 0 = . The nuisance parameter in this reduced setup is1-

12 -2
(11

~ 2 ' ' ' '= (nI'''''nP)'" (13)
2 2 1 p

Since the distribution of R depends on 2 only through 5 we may put 7= I and

redefine Y'n .
=  = (1'... a )' Using Stein's theorem (1956) or Wijsman's

~ -- p

representation theorem (1967), the ratio of the probability densities of R,

under H'I and under H, is given by (for g T)

11 101

n-i

p1 (g,gsg')H(g ) dg

ratio= T 1 -i(14)n-i

f p)g 2
po(gx,gsg')(gii) dg

GT

where
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n
(x's) q(tr{(s+nxx') -2nx',+6 2})

n

p0 (x,s) = IsI2 q(tr((s+nxx')).

Let A be a matrix belonging to GT such that A(s+n.xx')A' =i- Then
-- )-l -li -i,-i ,- --

A'A= (s+nxx') =s -ns xxvs (l+nx's x) , so that nx'A'Ax =

-' 1- - 1 _ 2 2nxIs x(l+nx's x) 7R R Since A (s +nx X', )A![ ii we

- i 9

obtain nx' A' so*haobt in i]a[ii] [ii]X[i] - = YR., so that
[i] 

i]

vAn Ax = (R,..., R)' (15)

i 9 -l
where viv =[ ]  R. Writing gA = g we get from (14)

4i]1i n-i

2 P 2 2
G q(tr(gg' -2 ca'gy+ 2)11 (g i i  dg

ratio T n-i i1(16)

r P 2 2
1 q(tr(gg') f(g)ii dg

I T

where

Let us assume that q is thrice continuously differentiable. Writing

q(i) (x) = d q we obtain
dx

i

q(tr(gg' -2 Lt'gy + 6 2

= q(tr gg') +q (1) (tr gg')(-2tr(,a'gy)+, )

(2)9

__ (tr gg') (-2 tr ("'gy)+ .)" (17)2

+ q (3)(Z) (-2 tr (c'gy)+ )3

where Z = tr gg' + (- 4(-2 tr (fi'gy)+), 0< I < 1. Let

n-i

D = q(tr gg') n(g) 2 dg. (18)

GT



8

n-i
P 2 2

Since the measures q (tr gg') fl(g ii dg, i=1,2,3 are invariant under

the change of sign of g to -g, we get

n-iri)p 2 2
tr(c('gy)q (tr gg') IT (g..) dg=0 (19)

T i=l

and

n-i
r Mp 2 2

gijg q (tr gg') 1 (g)ii dg=O (20)
GT  i=l

if i#Z, j k.

* Thus from (16)-(20) we get

n-i
r (1) p 2  2

ratio= 1 + q (tr gg')H(g.i) dg
D GT 1 13.

n-i
2 q (tr gg g(gii21)"- D Gr  iT~..

T 1
n-i

+ f P 2 2 (
'- T 1

i.- -i"n-i

6D j (-2 trc ' gy+A) 3  
2() 2 2(-2 q 3 (z)rr(gii) dg.

1

The first integral in (21) is a finite constant I  To evaluate the second

integral in (21) we first note that

tr _a'gy = . rj[ .. + 6.gjj]. (22)
9 j 1 J

From (20) and (22) the second integral can be tritten as

n-i

2 i 22 ) (2) (t g )p, 2 2 d .(23)

GT( r. i 1g
ij + 5Jg)q (tr gg')gii) dg. (3

- X .. -.
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- I',;

Let us now evaluate the integral

n-i
r 2 (2) p2 2
g q p 2. 2g)Ig g (24)
ii 1 i

T

Define

L = tr(gg'),

2. g/L , 1,, p

2

""epi =Z gi~i/L i=l,...,p-

2
ep~i = g . 2i/L i=,...,p-2

2

(2)5

K = qG q (tr gg')dg

T

(26)
r l (2)

N = J L q (L)dg.

(2) ,)
Since g (tr gg is a spherical density of g. s, L and e=(el,...,(p_

K iJ l ~ l
2

are independent and e obeys a Dirichlet distribution D(,1. ,1). From

Kariya and Eaton (1977) the probability density function of e is given by

f(p(P+l)) p(p+l) -1 P(P+l)
2 2 -- 1

p(e) =  ( 1e 2

[(i) ]p(p+l)/ 2  1
2

Now using (24)-(26) we get

n- n-i+2
N 2 2

I = - E( Fl (e.) e. )
K 1o

_ N (n-i+l) (27)
K 2

0 - ' ' -- " " " -m ~ . :z g a ~ ,, - - -' .- , -' n d -- - - , - L _, " . - . ,, ,- " -? - . . 2 " . ', . - . ' . , " - , ", ) . '
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where

n-iP -2i
M E (TI (e.) ).

Similarly

n-i
r 2 (2) p 2 2
G giq (tr gg )11(g dg

T1
p n-i NM

E(e TT e. 2 ) 2 with k > p- (28)

1

It may be verified that the third and the fourth integrals in (21) are both

of the order o2 uniformly in y and q. Hence we can write

ratio= I+ l M+ n( 2 n 2 +(n-j+l)rl2)

..7k 2D 1 K 1 i i3

+ B(y,,i\) (29)

where B(y,_a,X) o(X) uniformly in y and n. Thus, from (29), the equation

(10) is satisfied by letting 0; give measure one to the single point l = 0

while give measure one to the single point i .. )' whose

j th coordinate rlj satisfies

0* )-1
T) (n-J (n-j+l)-p-ln(n-p), =l,.p

(nj

so that

*2 *2  n
n i + (n-j+l)rl p(

i>j

The equation (8) follows from the null robustness of the distribution of T

(Kariya (1982)). To show (9) we proceed as follows.



For gE G, we can write using Wijsman's theorem

n-p

fT2(
t2 Hll)' _ G~2 (tr(gg' - 2ct'g +X)[gg'l 2 dg

T (31)

f 2 (t
2 H10) n-p

Tg q(tr gg')!gg'l 2dg

To evaluate (31) we use the following results.

(i) Given x = (xl,...,x)' there exists an 0cO(p), the group of pxp

orthogonal matrices such that

0x (vx'x , 0,...,0)'. (32)

(ii) We can decompose G = G XO(p). Denote
2.T

np n-i
2 p2 2

P(dg) = jgg'j dg, (dh) = IT(h)ii dh (33)
1

for hcEG and T(dO) the invariant measure on 0(p). Then for gEG.,

T

w(dg) = (dh) T(dO).
~trAB

(iii) r tr(AOBO')T(dO) = --
O(p)P

kT 0 if k is odd

and [ (tr OA) k(dO) = trA'A
J0(p) L if k=2. (34)

Using the above results we can rewrite (31) as
n-i

1 + r q (tr hh) fl(h.2)2dh

S1n-i

+2, r2  2 2(2) p 2  n21
22  h 11 q (tr hh')fI(h i) dh + B(X,l, )  (3.5)

p2D G 1

2
1 + X(K + cr2 ) +

a".".." -. ". ", "- . € -.- . .- "- • - "- .. ' , - . . "-" .. . ...
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where B(y,n,) o(k) uniformly in y and n and k,c are positive constants

2_
(using (27) and (28)). Hence forT test, with b>0,

P . test b w + g(b,n)
X ri

with g(X,n) ; o(bX).

Hence we get the following theorem.

Theorem 1. For testing HI0 against HII , Hotelling's T
2 test is locally mini-

max as .- 0 for the family of distributions given in (1).

2. LP invariant and locally minimax test for problem 2

Write X.= i =,. ..,n and X = (X X )with XI = (i)

:i (2)) (1)J
X 1 (2) with XX: nxp, , X nxP. Now writing Z = E( -(2 ()

*~=n( 1: n , '2 P2' 22.1 (22)_ (21) (11)-(12)'
.-n(2),

e 2(e we can write

fx) = I-n/2
(11) 22.1

q(tr{z- (x ,(x , }

where

u=X-e I (x -ei J
2 -e2 ( ) -1 (l (1 1) ) (12).

The marginal probability density function of X is given by
1

°*,,
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-1/2
where, taking w E u ,

q(tr Z- f n(tr( )(l )dw.

S(1l) V) = P~tnq (I) V •

R

The assumed convexity of q implies convexity of j. j
To find the ratio of the probability densities of the maximal invariant

-2
R with respect to the group (G,TI) we can without any loss of generality
1

consider only the multiplicative group GZ(P 1 )which transforms each

Xi(1) -gXi(1), g E GZ.(P

Using Stein's theorem or the Wijsman's representation theorem we obtain

-2
for gE G(p), the ratio of probability densities of R under H and

£1 1 21

H as
* 20

n-p1

j~tr(gg'-2p'gy +T2)Igg'! 2 dg

ratio= n-pl (38)

jJq(tr gg')Igg'1 2 dg

where = ,r.. ), y 1 ,..., )' satisfying 'p = 2

1'11

Using (32) we can write the numerator of (38) as
n-p1

jI(tr(gg,_2*'gy* + 2)!ggI 2 dg = H(r2 (say)
n-p1

with ,* = (i,0,...,0)', y* = (rlO,...,O)'. Since Igg'I 2 dg is invariant

under the sign change, g- -g - h G (pl) we conclude that

n-p1

H(r) = (tr(gg'-2*' 2 dg - H(-rl). (39)

H9(p1 )

Hence H(r) Y~H(r) + (1-t)H(-r 1) Since is convex by assumption, for
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1-< < 1,
2

H(rI) > H((2a.-l)rl). (40)

From (39)-(40), we conclude that H(rI) is a monotonically increasing funciton

-2
of r1 . Now applying Neyman-Pearson lemma we obtain the following theorem.

-2 2Theorem 2. For testing H2: =0 against the alternative H 0 > 0 the
20 l 21 1

test which rejects H20 whenever -2 > c is UMPI with respect to the group

(G,TI) for the family of distributions given in (1).

Moreover, we can prove in an analogous way, using the results of section 1,

the following theorem. The details are omitted.

Theorem 3. For testing H20 against H21: X (specified)> 0,Hotelling's

2
T test which rejects H20 whenever RI > c is locally minimax as -+ 0.

- . . .- . .
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